Содержание

BE	ведение	6
1	Исходные данные	7
2	Размеры, конфигурация, материал	
2.1	1 Главные размеры	8
2.2	2 Сердечник статора	9
3	Обмотка статора	
3.1	l Расчет обмотки статора	11
3.2	2 Расчет размеров зубцовой зоны статора	12
4	Обмотка короткозамкнутого ротора	
4.1	l Размеры овальных полузакрытых пазов	18
4.2	2 Размеры короткозамкнутого кольца	19
5	Расчет магнитной цепи	
5.1	I МДС для воздушного зазора	21
5.2	2 МДС для зубцов при трапецеидальных полузакрытых пазах ст	атора.21
5.3	В МДС для зубцов при овальных полузакрытых пазах ротора	22
5.4	4 МДС для спинки статора	22
5.5	5 МДС для спинки ротора	22
5.6	б Параметры магнитной цепи	23
6	Активные и индуктивные сопротивления обмоток	
6.1	1 Сопротивление обмотки статора	24
6.2	2 Сопротивление обмотки короткозамкнутого ротора	26
6.3	В Сопротивление обмоток преобразованной схемы замещения	
ДВ	игателя	28
7	Режимы холостого хода и номинальный	
7.1	l Расчет параметров холостого хода	30
7.2	2 Расчет параметров номинального режима	31
8	Рабочие характеристики	
Q	Максимальный момент	

9.1 Расчет максимального момента	37
10 Начальный пусковой ток и начальный пусковой момент	
10.1 Овальный полузакрытый паз ротора	39
10.2 Расчет пускового тока и момента	40
11 Тепловой и вентиляционный расчеты	
11.1 Тепловой расчет	43
11.2 Вентиляционный расчет	46
12 Масса двигателя и динамический момент инерции ротора	47
13 Механический расчет вала	
13.1 Расчет вала на жесткость	48
13.2 Определение критической частоты вращения	49
13.3 Расчет вала на прочность	50
Заключение	51
Список литературы.	52
Приложение 1	53
Приложение 2	54

Введение

Асинхронные двигатели — наиболее распространенный вид электрических машин, потребляющий в настоящее время около 40% всей вырабатываемой электроэнергии. Их Установленная мощность постоянно возрастает.

Асинхронные двигатели широко применяются в приводах металлообрабатывающих, деревообрабатывающих и других станков, кузнечнопрессовых, ткацких, швейных, грузоподъемных, землеройных машин, вентиляторов, насосов, компрессоров, центрифуг, в лифтах, в ручном электроинструменте, в бытовых приборах и т.д. Практически нет отрасли техники и быта, где не использовались бы асинхронные двигатели.

Потребности народного хозяйства удовлетворяются главным образом двигателями основного исполнения единых серий общего назначения, т.е. применяемых для привода механизмов, не предъявляющих особых требований к пусковым характеристикам, скольжению, энергетическим показателям, шуму и т.п. Вместе с тем в единых сериях предусматривают также электрические и конструктивные модификации двигателей, модификации для разных условий окружающей среды, предназначенные для удовлетворения дополнительных специфических требований отдельных видов приводов и условий их эксплуатации. Модификации создаются на базе основного исполнения серий с максимально возможным использованием узлов и деталей этого исполнения.

В некоторых приводах возникают требования, которые не могут быть удовлетворены двигателями единых серий. Для таких приводов созданы специализированные двигатели, например электробуровые, крановометаллургические и др.

1 Исходные данные

Номинальный режим работы	Продолжительный
Высота оси вращения h, мм	160
Исполнение ротора.	Короткозамкнутый
Номинальная отдаваемая мощность P_2 , к B_{1}	18,5
Количество фаз статора т	3
Способ соединения фаз статора	Δ/Υ
Частота сети f, Гц.	50
Номинальное линейное напряжение U, В	220/380
Синхронная частота вращения n ₁ , об/мин	3000
Степень защиты от внешних воздействий	IP44
Способ охлаждения	IC0141
Исполнение по способу монтажа	IP1001
Климатические условия и категория размещения	У3
Форма выступающего конца вала	Цилиндрическая
Способ соединения с приводным механизмом	Упругая муфта
Количество пар полюсов р.	2
Расчет ведем по [1]	

- 2 Размеры, конфигурация, материал
- 2.1 Главные размеры
- 2.1.1 Внешний диаметр сердечника статора по таблице 8.6

$$D_A = 278 \text{ MM}.$$

2.1.2 Внутренний диаметр сердечника статора (8.2)

$$D = k_D \cdot D_A = 0.52 \cdot 278 \approx 145 \text{ MM}$$

где $k_D=0.52$ по таблице 8.7.

2.1.3 Полюсное деление (8.3)

$$\tau = \frac{\pi \cdot D}{2p} = \frac{3,14 \cdot 145}{2} = 227,77$$
 _{MM}.

2.1.4 Расчетная мощность (8.4)

$$P' = \frac{\kappa_E P_2}{\eta' \cos \varphi'} = \frac{0.98 \cdot 18.5 \cdot 10^3}{0.87 \cdot 0.87} = 23564.54 B_{T},$$

где κ_E =0,98 – коэффициент по рисунку 8.20; η '=87% – среднее значение КПД (рисунок 8.27 а); $\cos\varphi$ '=0,87 – среднее значение $\cos\varphi$ (рисунок 8.27 а).

2.1.5 Расчетная длина сердечника статора (8.5)

$$\Omega = \frac{4 \cdot \pi \cdot f_1}{2p} = \frac{4 \cdot 3,14 \cdot 50}{2} = 314,16 \text{ pag}^{-1}.$$

2.1.6 Расчетная длина сердечника статора (8.6)

$$\ell_1 = \frac{P' \cdot 10^9}{D^2 \cdot A \cdot \Omega \cdot B_6 \cdot k_{o61} \cdot k_B} = \frac{23564,54 \cdot 10^9}{145^2 \cdot 36000 \cdot 314,16 \cdot 0,74 \cdot 0,96 \cdot 1,11} \approx 130 \text{ MM},$$

где κ_{o61} =0,96 – предварительный обмоточный коэффициент для однослойной обмотки;

 $\kappa_{\rm B}$ =1,11 –коэффициент формы поля;

 A'_1 =36000 A/м – предварительная электромагнитная нагрузка (рисунок 8.22 б);

 $B'_{6}=0,74\ Tл$ – предварительная индукция (рисунок $8.22\ б$).

2.1.7 Определяем отношение λ

$$\lambda = \ell_1 / \tau = 130/227,77 = 0,57.$$

Что меньше предельно допустимого значения λ_{max} =0,9 (рисунок 8.25).

2.2 Сердечник статора

Сердечник собирают из отдельных отштампованных листов электротехнической стали марки 2013, толщиной 0,5 мм, с изолированием листов оксидированием. Коэффициент заполнения сталью $k_{\rm C}$ =0,97. Принимаем форму паза трапецеидальную полузакрытую. Обмотка однослойная всыпная концентрическая

2.2.1 Максимальное число пазов (8.16)

$$Z_{1MIN} = \frac{\pi \cdot D}{t_{1MIN}} = \frac{3,14 \cdot 145}{14,4} = 31,67;$$

$$Z_{1MAX} = \frac{\pi \cdot D}{t_{1MAX}} = \frac{3,14 \cdot 145}{17,5} = 26,05,$$

где t_{IMAX} =17,5 — максимальная величина зубцового деления статора; t_{IMIN} =14,4 — минимальная величина зубцового деления (рисунок 8.26).

2.2.2 Количество пазов сердечника статора

$$Z_1 = 30$$
.

2.2.3 Количество пазов на полюс и фазу

$$q_1 = \frac{Z_1}{2p \cdot m} = \frac{30}{2 \cdot 3} = 5$$

2.2.4 Зубцовое деление по внутреннему диаметру статора

$$t_1 = \frac{\pi \cdot D}{2p \cdot m \cdot q_1} = \frac{3,14 \cdot 145}{2 \cdot 3 \cdot 5} = 15,18 \text{ MM}.$$

- 3 Обмотка статора
- 3.1 Расчет обмотки статора

Принимаем однослойную всыпную концентрическую обмотку и проводов марки ПЭТВ, укладываемую в трапецеидальные полузакрытые пазы

3.1.1 Номинальный фазный ток (8.18)

$$I_{1HOM} = \frac{P_2 \cdot 10^3}{\text{m} \cdot \text{U} \cdot \text{\eta'} \cdot \cos \text{\varphi'}} = \frac{18.5 \cdot 10^3}{3 \cdot 220 \cdot 0.87 \cdot 0.87} = 36.43 \text{ A}.$$

3.1.2 Количество эффективных проводников в пазу (9.16)

$$u_{\text{II}} = \frac{\pi \cdot D \cdot A' \cdot a}{I_{\text{1HOM}} \cdot Z_{\text{1}}} \cdot 10^{-3} = \frac{3.14 \cdot 145 \cdot 36000 \cdot 1}{36.43 \cdot 30} \cdot 10^{-3} \approx 15,$$

где a=1 – количество параллельных ветвей обмотки статора (глава 3).

3.1.3 Количество витков в обмотке (8.20)

$$\mathbf{w}_1 = \frac{\mathbf{u}_{11} \cdot \mathbf{Z}_1}{2\mathbf{a} \cdot \mathbf{m}} = \frac{15 \cdot 30}{2 \cdot 1 \cdot 3} \approx 75.$$

3.1.4 Магнитный поток (8.22)

$$\Phi = \frac{\kappa_E U}{4 \cdot k_B \cdot w_1 \cdot \kappa_{ofl} \cdot f_1} = \frac{0.98 \cdot 220}{4 \cdot 1.11 \cdot 75 \cdot 0.911 \cdot 50} = 1.42 \cdot 10^{-2},$$

где $k_{Ob1}=k_{P1}\cdot k_{V1}=0,958\cdot 0,95=0,911$ — уточненный обмоточный коэффициент. $k_{P1}=0,958$ — коэффициент распределения обмотки (таблица 3.16) $k_{V1}=0,95$ — коэффициент укорочения.

3.1.5 Уточненная индукция в воздушном зазоре (8.23)

$$B_6 = \frac{p \cdot \Phi \cdot 10^6}{D \cdot l_{\delta}} = \frac{1 \cdot 1,42 \cdot 10^{-2} \cdot 10^6}{145 \cdot 130} = 0,754 \text{ Tm}.$$

3.1.6 Уточненная линейная нагрузка статора (8.21)

$$A = \frac{2 \cdot I_{1HOM} \cdot w_1 \cdot m}{\pi \cdot D \cdot a} = \frac{2 \cdot 36,43 \cdot 75 \cdot 3}{3,14 \cdot 145 \cdot 1} = 35990,14 \text{ A/M}.$$

3.1.7 Предварительная плотность тока в обмотке статора (8.25)

$$J_1 = \frac{AJ_1}{A} = \frac{3.05 \cdot 10^{11}}{35990.14 \cdot 10^6} = 8,47 \text{ A/mm}^2,$$

где AJ=3,05·10¹¹ – по рисунку 8.27 б.

3.1.8 Предварительная площадь поперечного сечения эффективного проводника (8.24)

$$q_{\ni \Phi} = \frac{I_{1HOM}}{a \cdot J_1} = \frac{36,43}{1 \cdot 8,47} = 4,3 \text{ MM}^2.$$

3.1.9 Предварительное сечение элементарного проводника

$$q_{\ni \Pi} = \frac{q_{\ni \Phi}}{n_{\ni \Pi}} = \frac{4,3}{7} = 0,61 \text{ MM}^2,$$

где $n_{\text{Эл}} = 7 - \text{количество элементарных проводов в эффективном.}$

3.1.10 Выбор провода

По приложению 3 находим ближайший стандартный провод d/d'=1,32/1,4 мм; S=1,368 мм².

3.1.11 Площадь поперечного сечения эффективного проводника

$$q_{\ni \Phi.CP} = q_{\ni \Pi} \cdot n_{\ni \Pi} = 1,368 \cdot 7 = 9,58 \text{ MM}^2.$$

3.1.12 Предварительная плотность тока в обмотке статора (8.25)

$$J_1 = \frac{I_{1HOM}}{a \cdot q_{240,CP}} = \frac{36,43}{1 \cdot 1,368} = 3.8 \text{ A/MM}^2,$$

- 3.2 Расчет размеров зубцовой зоны статора
- 3.2.1 Ширина зубцов (8.37)

$$b_{Z1} = \frac{t_1 B_6 l_8}{k_C B_{31} l_{CT1}} = \frac{15,18 \cdot 0,754 \cdot 130}{0,97 \cdot 1,8 \cdot 130} = 6,6 \text{ MM},$$

где B_{31} =1,8 Тл – среднее значение магнитной индукции в зубцах статора (таблица 9.14).

3.2.2 Высота спинки статора (8.28)

$$h_A = \frac{\Phi \cdot 10^6}{2k_C \ell_1 B_A} = \frac{1,42 \cdot 10^{-2} \cdot 10^6}{2 \cdot 0,97 \cdot 130 \cdot 1,6} = 35,2 \text{ MM},$$

где B_A =1,6 Тл – среднее значение магнитной индукции в спинке статора (таблица 8.10).

3.2.3 Высота паза (8.38)

$$h_{\text{II}} = \frac{D_{\text{A}} - D}{2} - h_{\text{A1}} = \frac{278 - 145}{2} - 35,2 = 31,3 \text{ MM}.$$

3.2.4 Большая ширина паза (8.39)

$$b_2 = \frac{\pi(D + 2h_{\Pi})}{Z_1} - b_{Z_1} = \frac{3,14(145 + 2.31,3)}{30} - 6,6 = 15,1_{MM}.$$

3.2.5 Меньшая сторона паза (8.40)

$$b_1 = \frac{\pi(D + 2h_{III} - b_{III}) - Z_1b_{Z1}}{Z_1 - \pi} = \frac{\pi(145 + 2 \cdot 1 - 3,7) - 30 \cdot 6,6}{30 - 3,14} = 9,4 \text{ MM},$$

где $b_{\text{Ш}}$ =3,7 мм – ширина шлица (таблица 8.14).

3.2.6 Размеры паза в свету с учетом припуска на сборку (8.42)

$$b_1 = b_1 - \Delta b_{\Pi} = 9,4 - 0,2 = 9,2 \text{ mm};$$

$$b_2 = b_2 - \Delta b_{\Pi} = 15,1 - 0,2 = 14,9 \text{ mm};$$

$$h_1 = h_1 - \Delta h_{\Pi} = 27,5 - 0,2 = 27,3 \text{ mm},$$

где $\Delta b_{\Pi} = \Delta h_{\Pi} = 0,2$ – припуски на штамповку (таблица 8.12).

3.2.7 Площадь поперечного сечения корпусной изоляции (9.31)

$$S_{H3} = b_{H3}(2h_{H} + b_{1} + b_{2}) = 0.4(2.31.3 + 9.4 + 15.1) = 34.84 \text{ mm}^{2}$$

где $b_{\text{из}}$ =0,4 мм – односторонняя толщина корпусной изоляции по таблице 3.1.

3.2.8 Площадь поперечного сечения паза для размещения обмотки (8.48)

$$S'_{\Pi} = \frac{b'_{1} + b'_{2}}{2} h'_{\Pi.K} - (S_{\mu 3} + S_{\Pi P}) = \frac{9,2 + 14,9}{2} 27,3 - (34,84 + 14,5) = 279,625 \text{ mm}^{2},$$

где
$$h'_{\Pi.K} = h'_{\Pi} - h_{III} - \frac{b_2 - b_{III}}{2} = 31, 3 - 1 - \frac{9, 4 - 3, 7}{2} = 27, 5;$$

 $S_{\text{ПР}} = 14,5 -$ площадь поперечного сечения прокладок.

3.2.9 Коэффициент заполнения паза (9.35)

$$k_3 = \frac{u_{\Pi} \cdot n_{\ni \Pi} \cdot (d')^2}{S'_{\Pi}} = \frac{15 \cdot 7 \cdot (1,4)^2}{279,625} = 73,57\%.$$

- 4 Расчет короткозамкнутого ротора
- 4.1 Сердечник ротора

Сердечник ротора собирают из отдельных отштампованных листов электротехнической стали марки 2013 толщиной 0,5 мм.

4.1.1 Коэффициент заполнения сталью

$$\kappa_c = 0.97$$
.

4.1.2 Воздушный зазор между статором и ротором (рисунок 8.31)

$$\delta = 0.4 \text{ MM}.$$

4.1.3 Внешний диаметр ротора

$$D_2 = D_1 - 2 \cdot \delta = 145 - 2 \cdot 0, 4 = 144, 2 \text{ MM}.$$

4.1.4 Внутренний диаметр ротора (8.102)

$$D_i = D_B \approx 0.23 D_A = 0.23 \cdot 278 = 60 \text{ MM}.$$

4.1.5 Длина магнитопровода ротора

$$\ell_2 = \ell_1 = 130 \text{ MM}.$$

4.1.7 Число пазов ротора (таблица 8.16)

$$Z_2 = 38$$
.

4.1.8 Зубцовое деление ротора

$$t_{z2} = \pi D_2/Z_2 = 3,14.144,2/38 = 11,92.$$

4.1.9 Ток в обмотке ротора (8.57)

$$I_2 = k_i I_{\text{1hom}} v_i = 0.896 \cdot 36,43 \cdot 10,79 = 352,21,$$

где k_i =0,2+0,8 $\cos \varphi$ =0,2+0,8 \cdot 0,87=0,896 (8.58) – коэффициент, учитывающий влияние тока намагничивания на отношение I_1/I_2 ;

$$u_{i} = \frac{2m_{1}\omega_{1}k_{o61}}{Z_{2}k_{c\kappa}} = \frac{2\cdot3\cdot75\cdot0,911}{38\cdot1} = 10,79$$
 (8.66) – коэффициент приведения

токов.

4.1.10 Предварительная площадь поперечного сечения стержня (8.68)

$$q_c = I_2/J_2 = 352,21/2,9 = 121,45.$$

- 4.2 Размеры трапецеидальных закрытых пазов
- 4.2.1 Размеры шлица (рисунок 8.40,б)

Принимаем $b_{\text{m}}=1,5$ мм; $h_{\text{m}}=0,7$ мм; $h'_{\text{m}}=0,3$ мм.

4.2.2 Допустимая ширина зубца (8.75)

$$b_{_{32\text{доп}}} = \frac{B_6 t_{_{z2}} l_{_{\delta}}}{B_{_{z2}} \kappa_c l_{_{cr2}}} = \frac{0,754 \cdot 11,92 \cdot 130}{1,8 \cdot 0,97 \cdot 130} = 5,1_{\text{MM}}.$$

4.2.3 Больший радиус паза (8.76)

$$b_1 = \frac{\pi(D_2 - 2h_{_{III}} - 2h'_{_{III}}) - z_2b_{_{Z2}}}{z_2 + \pi} = \frac{3,14 \cdot (144,2 - 2 \cdot 0,7 - 2 \cdot 0,3) - 38 \cdot 5,1}{38 + 3,14} = 6,1_{MM}.$$

4.2.4 Меньший радиус паза (8.77)

$$b_2 = \sqrt{\frac{b_1^2(z_2/\pi + \pi/2) - 4q_c}{z_2/\pi + \pi/2}} = \sqrt{\frac{6,1^2 \cdot (38/3,14 + 3,14/2) - 4 \cdot 121,45}{38/3,14 - 3,14/2}} = 1,5 \text{ mm}.$$

4.2.5 Расстояние между центрами радиусов (8.78)

$$h_1 = (b_1 - b_2) \cdot z_2 / (2 \cdot \pi) = (6, 1 - 1, 5) \cdot 38 / (2 \cdot 3, 14) = 27,8 \text{ MM}.$$

4.2.6 Уточненная ширина зубцов ротора (8.18)

$$b'_{z2} = \pi \frac{D_2 - 2(h_{III} + h'_{III})b_1}{z_2} - b_1 = 3,14 \cdot \frac{144,2 - 2 \cdot (0,7 + 0,3) - 6,1}{38} - 6,1 = 5,15 \text{ MM};$$

$$b''_{z2} = \pi \frac{D_2 - 2h_{\pi 2} + b_2}{z_2} - b_2 = 3,14 \cdot \frac{144,2 - 2 \cdot 32,6 + 1,5}{38} - 1,5 = 5,16_{MM}$$

4.2.7 Полная высота паза

$$h_{112} = h'_{111} + h_{111} + b_1/2 + h_1 + b_2/2 = 0.3 + 0.7 + 6.1/2 + 27.8 + 1.5/2 = 32.6 \text{ MM}.$$

4.2.8 Площадь поперечного сечения стержня (8.79)

$$q_c = \pi/8(b^2_1 + b^2_2) + 0.5(b_1 + b_2)h_1 = 3.14/8 \cdot (6.1^2 + 1.5^2) + 0.5 \cdot (6.1 + 1.5) \cdot 27.8 = 121.1 \text{ mm}^2.$$

4.2.9 Плотность тока в стержне (8.68)

$$J_2=I_2/q_c=352,21/121,1=2,91 \text{ A/mm}^2$$
.

- 4.3 Размеры короткозамыкающего кольца
- 4.3.1 Ток в кольце (8.70)

$$I_{\text{KJ}} = I_2/\Delta = 352,21/0,17 = 2132,54 \text{ A},$$

где
$$\Delta = 2 \sin(\pi p/z_2) = 2 \sin(3.14 \cdot 2/(2 \cdot 38)) = 0.17 (8.71).$$

4.3.2 Плотность тока в замыкающих кольцах

$$J_{KJ} = 0.85 \cdot J_2 = 0.85 \cdot 2.91 = 2.47 \text{ A/mm}^2$$
.

4.3.3 Площадь поперечного сечения кольца (8.72)

$$q_{\text{kii}} \!\!= I_{\text{kii}} \! / \ J_{\text{kii}} \!\!= \!\! 2132,\! 54/2,\! 47 \!\!= \!\! 865,\! 13 \ \text{mm}^2.$$

4.3.4 Высота кольца литой клетки

$$h_{KJ} = 1,25h_{II2} = 1,25 \cdot 32,6 = 41 \text{ MM}^2.$$

4.3.5 Длина кольца

$$b_{\kappa n} = q_{\kappa n}/h_{\kappa n} = 865,13/41 = 21 \text{ MM}^2.$$

4.3.6 Средний диаметр кольца

$$D_{\text{кл.cp}} = D_2 - h_{\text{кл}} = 144, 2-41 = 103, 2 \text{ мм}.$$

- 5 Расчет магнитной цепи
- 5.1 МДС для воздушного зазора
- 5.1.1 Коэффициент воздушного зазора (4.15)

$$k_{\delta} = \frac{t_{z1}}{t_{z1} - y_1 \delta} = \frac{15,18}{15,18 - 6.0,4} = 1,19$$

где
$$\gamma_1 = \frac{(b_{m1}/\delta)^2}{5 + b_{m1}/\delta} = \frac{(3,7/0,4)^2}{5 + 3,7/0,4} = 6.$$

5.1.2 МДС воздушного зазора (8.103)

$$F_{\delta} = \frac{2}{\mu} B_{\delta} \delta k_{\delta} = \frac{2}{1,26 \cdot 10^{-6}} \cdot 0,754 \cdot 0,4 \cdot 1,19 \cdot 10^{-3} = 570,18 \text{ A}.$$

- 5.2 МДС зубцовой зоны статора
- 5.2.1 Расчетная индукция в зубцах (8.105)

$$B'_{z1} = \frac{B_{\delta}t_{z1}l_{\delta}}{b_{z1}l_{cr1}k_{c1}} = \frac{0.754 \cdot 15.18 \cdot 130}{6.6 \cdot 130 \cdot 0.97} = 1.79 \text{ Tm.}$$

5.2.2 Напряженность магнитного поля (таблица П1.7)

$$H_{Z1}=1342 \text{ A/m}.$$

5.2.2 МДС зубцовой зоны статора (8.104)

$$F_{z1}=2h_{z1}H_{z1}=2.31,3.10^{-3.1342}=83,99 A$$

где $h_{z1}=h_{\pi 1}=31,3$ мм.

- 5.3 МДС зубцовой зоны ротора
- 5.3.1 Расчетная индукция в зубцах (8.105)

$$B'_{z2} = \frac{B_{\delta}t_{z2}I_{\delta}}{\frac{(b'_{z2} + b''_{z2})}{2}I_{CT2}k_{C2}} = \frac{0,754 \cdot 11,92 \cdot 130}{\frac{(5,15 + 5,16)}{2} \cdot 130 \cdot 0,97} = 1,8 \text{ Tm}$$

5.3.2 Напряженность магнитного поля (таблица П1.7)

$$H_{z2}=1386 \text{ A/m}.$$

5.3.3 МДС зубцовой зоны ротора (8.108)

$$F_{z2}=2h_{z2}H_{z2}=2\cdot32,45\cdot10^{-3}\cdot1386=89,94 A$$

где $h_{z2}=h_{n2}-0,1b_2=32,6-0,1\cdot 1,5=32,45$ мм.

5.4 Коэффициент насыщения зубцовой зоны (8.115)

$$k_z = 1 + \frac{F_{z1} + F_{z2}}{F_{\delta}} = 1 + \frac{83,99 + 89,94}{570,18} = 1,31.$$

- 5.5 МДС ярма статора
- 5.5.1 Высота ярма статора (8.120)

$$h_a = (D_a - D)/2 - h_{\pi 1} = (278 - 145)/2 - 31,3 = 35,2 \text{ MM}.$$

5.5.2 Длина средней силовой линии в ярме статора (8.119)

$$L_a = \pi(D_a - h_a)/(2p) = 3,14 \cdot (278 - 35,2)/2 = 381,39 \text{ MM}.$$

5.5.3 Индукция в ярме статора (8.117)

$$B_{a} = \frac{\Phi}{2h'_{a}l_{crl}k_{cl}} = \frac{1,42 \cdot 10^{-2} \cdot 10^{6}}{2 \cdot 35, 2 \cdot 130 \cdot 0,97} = 1,6 \text{ Tm},$$

где $h'_a = h_a = 35,2$ мм – при отсутствии радиальных вентиляционных каналов.

5.5.4 Напряженность магнитного поля (таблица П1.6)

$$H_a=1692 \text{ A/m}.$$

5.5.5 МДС ярма статора (8.116)

$$F_a = L_a H_a = 381,39 \cdot 10^{-3} \cdot 1692 = 645,43 \text{ A}.$$

- 5.6 МДС ярма ротора
- 5.6.1 Высота ярма ротора (8.124)

$$h_i = (D_2 - D_i)/2 - h_{\pi 2} = (144, 2-60)/2 - 32, 6=9,5 \text{ MM}.$$

5.6.2 Длина средней силовой линии в ярме ротора (8.127)

$$L_j = \pi(D_j + h_j)/(2p) = 3,14 \cdot (60 + 9,5)/4 = 109,17 \text{ MM}.$$

5.6.3 Расчетная длина ярма ротора (8.124)

$$h'_{j} = \frac{4+2p}{3,2\cdot 2p} \left(\frac{D_{2}}{2} - h_{n2}\right) = \frac{4+2}{3,2\cdot 2} \left(\frac{144,2}{2} - 32,6\right) = 37,03 \text{ MM}.$$

5.6.4 Индукция в ярме ротора (8.122)

$$B_{j} = \frac{\Phi}{2h_{1}^{'}l_{cr2}k_{c2}} = \frac{1,42 \cdot 10^{-2} \cdot 10^{6}}{2 \cdot 37,03 \cdot 130 \cdot 0,97} = 1,52 \text{ Tm}.$$

5.6.5 Напряженность магнитного поля (таблица П1.6)

$$H_i = 811 \text{ A/m}.$$

5.6.6 МДС ярма ротора (8.121)

$$F_j = L_j H_j = 109,17 \cdot 10^{-3} \cdot 811 = 88,5 A.$$

- 5.7 Параметры магнитной цепи
- 5.7.1 Суммарная МДС магнитной цепи на пару полюсов (8.128)

$$F_{u} = F_{\delta} + F_{z1} + F_{z2} + F_{a} + F_{j} = 570,18 + 83,99 + 89,94 + 645,43 + 88,5 = 1478,03 \text{ A}.$$

5.7.2 Коэффициент насыщения магнитной цепи (8.129)

$$\kappa_{\mu} = F_{\mu}/F_{\delta} = 1478,03/570,18 = 2,59.$$

5.6.3 Намагничивающий ток (8.130)

$$I_{\mu} = \frac{2pF_{\mu}}{2 \cdot 0.9mw_{1}\kappa_{ool}} = \frac{1 \cdot 1478,03}{0.9 \cdot 3 \cdot 75 \cdot 0.911} = 8.01 \text{ A}.$$

5.6.4 Намагничивающий ток в относительных единицах (8.131)

 $I_{\mu*}\!\!=\!\!I_{\mu}\!/I_{1_{HOM}}\!\!=\!\!8,\!01/36,\!43\!\!=\!\!0,\!22.$

- 6 Параметры рабочего режима
- 6.1 Активное сопротивление фазы обмотки статора
- 6.1.1 Средняя ширина катушки (8.138)

$$b_{KT} = \frac{\pi(D + h_{\Pi 1})}{2p} \beta = \frac{3,14 \cdot (145 + 31,3)}{2} = 276,9 \text{ MM},$$

где β =1 (для однослойной обмотки) – укорочение шага обмотки статора.

6.1.2 Длина лобовой части (8.136)

$$l_{\text{nl}} = K_{\text{N}} b_{\text{kt}} + 2B = 1,2.276,9 + 2.10 = 352,3 \text{ MM},$$

где B=10 мм. – длина вылета прямолинейной части катушек из паза от торца сердечника до начала отгиба лобовой части;

 $K_{\pi}=1,2-$ коэффициент из таблицы 8.21.

6.1.3 Средняя длина витка обмотки (8.135)

$$l_{cpl}=2(l_{nl}+l_{nl})=2\cdot(130+352,3)=964,6 \text{ MM},$$

где $l_{\pi l} = l_{l} = 130$ мм.

6.1.4 Длина проводников фазы обмотки (8.134)

$$L_1 = l_{cp1}\omega_1 = 964, 6.75 = 72347,7 \text{ MM}.$$

6.1.5 Активное сопротивление обмотки статора (8.132)

$$r_1 = k_R \rho_{115} \frac{L_1}{q_{2\phi} a} = 2,44 \cdot 10^{-5} \cdot 72347,7/(9,58 \cdot 1) = 0,18 \text{ OM},$$

где p_{115} =2,44 \cdot 10 $^{-5}$ ом/м – удельное сопротивление материала обмотки.

6.1.6 Активное сопротивление обмотки в относительных единицах

$$r_1 = r_1 I_{1\text{HoM}} / U_{1\text{HoM}} = 0,18.36,43/220 = 0,031.$$

6.2 Активное сопротивление фазы обмотки ротора

6.2.1 Активное сопротивление стержня (8.169)

$$r_c = \rho_{115} \frac{\ell_2}{q_c} = 4.88 \cdot 10^{-5} \frac{130}{121.45} = 5.22 \cdot 10^{-5} O_M,$$

где ρ_{115} =4,88·10⁻⁵ Ом·м – для алюминиевого стержня.

6.2.2 Сопротивление участка замыкающего кольца (8.170)

$$r_{\text{KJ}} = \rho_{115} \frac{\pi D_{\text{KJI,Cp}}}{z_2 q_{\text{KJI}}} = 4.88 \cdot 10^{-5} \frac{3.14 \cdot 103.2}{38 \cdot 861} = 4.83 \cdot 10^{-7} \text{ OM}.$$

6.2.3 Активное сопротивление обмотки ротора, приведенное к обмотке статора (8.172), (8.173)

$$\mathbf{r'}_{2} = \mathbf{r}_{2} \frac{4\mathbf{m}(\omega_{1} \mathbf{k}_{\text{o}61})^{2}}{\mathbf{z}_{2} \mathbf{k}_{\text{ck}}} = 8,77 \cdot 10^{-5} \frac{4 \cdot 3 \cdot (75 \cdot 0,911)^{2}}{38 \cdot 1} = 0,129 \text{ Om}.$$

6.2.4 Активное сопротивление обмотки ротора приведенное к обмотке статора в относительных единицах

$$r'_{2*} = \frac{r_2' I_{1_{HOM}}}{U_{1_{HOM}}} = \frac{0.129 \cdot 36,43}{220} = 0.0214.$$

- 6.3 Индуктивное сопротивление фазы обмотки статора
- 6.3.1 Коэффициент магнитной проводимости дифференциального рассеяния (8.174)

$$\lambda_{\text{ДI}} = \frac{t_{\text{ZI}}}{12\delta k_{\delta}} \xi = \frac{15,18.0,98}{12.0,4.1,19} = 2,62,$$

где
$$\xi = 2k_{c\kappa}^{'}k_{\beta} - k_{o61}^{2}(t_{Z2}/t_{Z1})^{2}(1+\beta_{c\kappa}^{2}) = 2.0,75.1-0,911^{2}.(11,92/15,18)^{2} = 0,98 (8.176);$$
 для $\beta_{c\kappa} = 0$ и $t_{Z2}/t_{Z1} = 0,79$ — $k_{c\kappa}^{'} = 0,75$ (рисунок 8.51,д).

6.3.2 Коэффициент проводимости пазового рассеяния (таблица 8.25)

$$\lambda_{III} = \frac{h_2}{3b_1} k_{\beta} + \left(\frac{h_1}{b_1} + \frac{3h_k}{b_1 + 2b_m} + \frac{h_{m1}}{b_m}\right) k_{\beta} = \frac{26,7 \cdot 1}{3 \cdot 9,4} + \left(\frac{0}{9,4} + \frac{3 \cdot 2,85}{9,4 + 2 \cdot 3,7} + \frac{1}{3,7}\right) \cdot 1 = 1,73,$$

где $h_2 = h_{\pi,\kappa} - 2b_{\mu_3} = 27,5 - 2 \cdot 0,4 = 26,7$ мм.; $h_{\kappa} = 0,5 \cdot (b_1 - b_{\pi}) = 0,5 \cdot (9,4 - 3,7) = 2,85$ мм; $h_1 = 0$ (проводники закреплены пазовой крышкой); $k_{\beta} = k'_{\beta} = 1$; $l'_{\delta} = l_{\delta} = 130$ мм.

6.3.3 Коэффициент магнитной проводимости лобового рассеяния (8.159)

$$\lambda_{\pi 1}\!\!=\!\!0,\!34\frac{q_{_1}}{\ell_{_{\mathcal{S}}}'}(\ell_{_{\!\!\!1}}\!\!-\!\!0,\!64\!\cdot\!\beta\!\cdot\!\tau)\!\!=\!\!0,\!34\frac{5}{130}(352,\!3\!-\!0,\!64\!\cdot\!0,\!8\!\cdot\!227,\!77)\!\!=\!\!3,\!08.$$

6.3.4 Индуктивное сопротивление фазы обмотки статора (8.152)

$$x_1 = 15, 8 \frac{f_1}{100} \left(\frac{w_1}{100}\right)^2 \frac{l_{\delta}}{pq} (\lambda_{\Pi_1} + \lambda_{\Pi_1} + \lambda_{\Pi_1}) = 15, 8 \frac{50}{100} \left(\frac{75}{100}\right)^2 \frac{130}{2 \cdot 5} (1,73 + 3,08 + 2,62) = 0,859 \text{ Om.}$$

6.3.5 Относительное значение

$$\mathbf{X}_{1} = \mathbf{X}_{1} \frac{\mathbf{I}_{1\text{HOM}}}{\mathbf{U}_{1\text{HOM}}} = 0.859 \frac{36.43}{220} = 0.14$$
.

- 6.4 Индуктивное сопротивление фазы обмотки ротора
- 6.4.1 Коэффициент магнитной проводимости дифференциального рассеяния (8.180)

$$\lambda_{\text{A2}} = \frac{t_{\text{Z2}}}{12\delta k_{\text{A}}} \xi = \frac{11,92 \cdot 1,001}{12 \cdot 0,4 \cdot 1,19} = 2,09,$$

где
$$\xi = 1 + \frac{1}{5} \left(\frac{\pi p}{Z_2} \right)^2 - \frac{\Delta_Z}{1 - (p/Z)^2} = 1 + \frac{1}{5} \left(\frac{3,14 \cdot 2}{38} \right)^2 - \frac{0}{1 - (2/38)^2} = 1,001 \quad (8.181),$$

где Δ_Z =0 – при закрытых пазах.

6.4.2 Коэффициент проводимости пазового рассеяния (таблица 8.25)

$$\lambda_{\Pi 2} = \left[\frac{h_0}{3b_1} \left(1 - \frac{\pi b_1^2}{8q_c} \right)^2 + 0,66 - \frac{b_m}{2b_1} \right] k_{\pi} + \frac{h_m}{b_m} + 1,12 \frac{h_m \cdot 10^6}{I_2} =$$

$$= \left[\frac{28,4}{3 \cdot 6,1} \left(1 - \frac{3,14 \cdot 6,1^2}{8 \cdot 121,1} \right)^2 + 0,66 - \frac{1,5}{2 \cdot 6,1} \right] \cdot 1 + \frac{0,7}{1,5} + 1,12 \cdot \frac{0,3 \cdot 10^3}{352,21} = 3,16,$$

где $h_0 = h_1 + 0,4b_2 = 27,8 + 0,4 \cdot 1,5 = 28,4$ мм.

6.4.3 Коэффициент магнитной проводимости лобового рассеяния (8.178)

$$\lambda_{\text{JI}2} = \frac{2,3D_{\text{KJI.cp}}}{Z_2 l_{\delta}^{'} \Delta^2} \lg \frac{4,7D_{\text{KJI.cp}}}{h_{\text{KJI}} + 2b_{\text{KJI}}} = \frac{2,3 \cdot 103,2}{38 \cdot 130 \cdot 0,17^2} \lg \frac{4,7 \cdot 103,2}{41 + 2 \cdot 21} = 1,35.$$

6.4.4 Индуктивное сопротивление фазы обмотки ротора (8.177)

$$x_{_{2}}=7,9f_{_{1}}l_{_{0}}^{'}(\lambda_{_{\Pi 2}}+\lambda_{_{\Pi 2}}+\lambda_{_{_{CK}}})10^{^{-6}}=7,9\cdot 50\cdot 130\cdot (3,16+1,35+2,09+0)\cdot 10^{^{-6}}=3,39\cdot 10^{^{-4}}~\mathrm{Om}.$$

6.4.5 Индуктивное сопротивление обмотки ротора, приведенное к обмотке статора

$$x_{2}' = x_{2} \frac{4m(w_{1}k_{o61})^{2}}{Z_{2}k_{ck}^{2}} = 3,39 \cdot 10^{-4} \frac{4 \cdot 3 \cdot (75 \cdot 0,911)^{2}}{38 \cdot 1} = 0,5$$

6.4.6 Относительное значение

$$X'_{2*}=X'_{2}\frac{I_{1HOM}}{U_{1HOM}}=0,5\frac{36,43}{220}=0,083$$
.

- 7 Расчет потерь
- 7.1 Основные потери в стали статора
- 7.1.1 Масса стали ярма статора (8.188)

$$m_a = \pi(D_a - h_a)h_a l_{cr1}k_{c1}v_c = 3,14 \cdot (278 - 35,2) \cdot 35,2 \cdot 130 \cdot 0,97 \cdot 7800 \cdot 10^{-9} = 26,41$$
 кг.

7.1.2 Масса стали зубцов статора (8.189)

$$m_{Z1} = h_{Z1} b_{Z1cp} Z_1 l_{cr1} k_{c1} \nu_c = 31,3.6,6.30.130.0,97.7800.10^{-9} = 6,1$$
 кг.

- 7.1.3 Принимаем $k_{\text{да}}=1,6$; $k_{\text{дZ}}=1,8$.
- 7.1.4 Основные потери в стали статора (8.187)

$$P_{_{\text{CT.OCH}}} = p_{_{1,0/50}} \bigg(\frac{f_{_1}}{50}\bigg)^{\beta} \left(k_{_{\text{Д}a}} B_{a}^2 m_{_a} + k_{_{\text{ДZ}}} B_{Z1}^2 + m_{_{Z1}} = 2,5 (1,6^2 \cdot 26,41 + 1,8 \cdot 1,8^2 \cdot 6,1) = 359,3 \ B_{\text{T.}} \\$$

- 7.2 Добавочные потери в стали
- 7.2.1 Амплитуда пульсации индукции в воздушном зазоре (8.190) $B_{02} = \beta_{02} k_{\delta} B_{\delta} = 0, 4 \cdot 1, 19 \cdot 0, 754 = 0, 36 \text{ Тл},$

где для
$$b_{\text{m}}/\delta = 9,3$$
 - $\beta_{02} = 0,4$ (рисунок 8.53).

7.2.2 Удельные поверхностные потери для ротора (8.192)

$$p_{_{\Pi OB 2}} = 0.5 k_{_{02}} \left(\frac{Z_{_1} n_{_1}}{10000}\right)^{_{1,5}} (B_{_{02}} t_{_{Z2}} \cdot 10^3)^2 = 0.5 \cdot 1.5 \cdot \left(\frac{30 \cdot 3000}{10000}\right)^{_{1,5}} \cdot (0.36 \cdot 15.18)^2 = 602.25 \; \mathrm{Br/m^2}$$

7.2.3 Поверхностные потери в роторе (8.194)

$$P_{\text{пов2}}\!\!=\!\!p_{\text{пов2}}\!(t_{\text{Z2}}\!\!-\!b_{\text{III2}})Z_2l_{\text{ct2}}\!\!=\!\!602,\!25\cdot\!(11,\!92\text{-}1,\!5)\cdot\!38\cdot\!130\cdot\!10^{\text{-}6}\!\!=\!\!31,\!01\ B_{\text{T}}.$$

7.2.4 Масса стали зубцов ротора (8.201)

$$m_{\rm Z2}^{} = h_{\rm Z2}^{} b_{\rm Z2cp}^{} Z_2^{} l_{\rm ct2}^{} k_{\rm c2}^{} \nu_{\rm c}^{} = 32,45 \cdot (5,15 \pm 5,16)/2 \cdot 38 \cdot 130 \cdot 0,97 \cdot 7800 \cdot 10^{-9} = 6,25 \text{ kg}.$$

7.2.5 Амплитуда пульсаций индукции в среднем сечении зубцов (8.196)

$$B_{\text{пул2}} \approx \frac{\gamma_1 \delta}{2t_{72}} B_{\text{Z2cp}} = 6.0, 4.1, 8/(2.11,92) = 0,181 \text{ T.m.}$$

7.2.6 Пульсационные потери в зубцах ротора (8.200)

$$P_{\text{пул2}} = 0.11 \left(\frac{Z_1 n}{1000} B_{\text{пул2}} \right)^2 m_{Z2} = 0.11 \cdot (30.3000.0.181/1000)^2 \cdot 6.25 = 182.7 \text{ Bt.}$$

7.2.7 Сумма добавочных потерь в стали (8.203)

$$P_{\text{ст.доб}} = P_{\text{пов1}} + P_{\text{пул1}} + P_{\text{пов2}} + P_{\text{пул2}} = 31,01 + 182,7 = 213,7 \text{ Bt.}$$

7.3Полные потери в стали (8.203)

$$P_{ct} = P_{ct.och} + P_{ct.dof} = 359,3 + 213,7 = 573,01 Bt.$$

7.4 Механические потери (8.210)

$$P_{\text{Mex}} = K_T \left(\frac{n}{10}\right)^2 D_a^4 = 0.94 \cdot (3000/10)^2 \cdot (278/1000)^4 = 504.55 \text{ BT},$$

где
$$K_T=1,3\cdot(1-D_a)=1,3\cdot(1-278\cdot10^{-3})=0,94.$$

- 7.5 Холостой ход двигателя
- 7.5.1 Электрические потери в статоре при холостом ходе (8.219)

$$P_{\text{plx.x}} \approx 3I_{\mu}^2 r_1 = 3.8,01^2.0,18 = 35,48 \text{ Bt.}$$

7.5.2 Активная составляющая тока холостого хода (8.218)

$$I_{x.x.a} = \frac{P_{ct} + P_{mex} + P_{olx.x}}{mU_{lyow}} = \frac{573,01 + 504,55 + 35,48}{3.220} = 1,69 \text{ A}.$$

7.5.3 Ток холостого хода двигателя (8.217)

$$I_{xx} = \sqrt{I_{xxa}^2 + I_{\mu}^2} = \sqrt{1,69^2 + 8,01^2} = 8,19 \text{ A}.$$

7.5.4 Коэффициент мощности при холостом ходе (8.221)

$$\cos\phi_{x.x} = \!\! I_{x.x.a} / I_{x.x} = \!\! 1,69/8,\!19 = \!\! 0,\!21_{.}$$

- 8 Рабочие характеристики
- 8.1 Параметры рабочего режима
- 8.1.1 Последовательно включенное активное сопротивление (8.184)

$$r_{12} = \frac{P_{\text{ct.och}}}{mI_{\mu}^2} = \frac{359,3}{3 \cdot 8,01^2} = 1,87 \text{ Om.}$$

8.1.2 Последовательно включенное индуктивное сопротивление (8.185)

$$x_{12} = \frac{U_{1_{HOM}}}{I_{II}} - x_1 = \frac{220}{8,01} - 0,859 = 26,6 \text{ OM}.$$

8.1.3 Комплексный коэффициент (8.223)

$$c_1=1+x_1/x_{12}=1+0,859/26,6=1,032.$$

Используем приближенную формулу, так как (8.222)

$$y = arctg \frac{r_1 x_{12} - r_{12} x_1}{r_{12} (r_1 + r_{12}) + x_{12} (x_1 + x_{12})} = arctg \frac{0.18 \cdot 26.6 - 1.87 \cdot 0.859}{1.87 \cdot (0.18 + 1.87) + 26.6 \cdot (0.859 + 26.6)} = 0.26^{\circ} < 1^{\circ}.$$

8.1.4 Активная составляющая тока синхронного холостого хода (8.226)

$$I_{0a} = \frac{P_{\text{ct.och}} + 3I_{\mu}^{2}r_{1}}{3U_{1}} = \frac{359.3 + 3.8.01^{2}.0.18}{3.220} = 0.6 \text{ A}.$$

8.1.5 Расчетные величины (8.227)

$$a'=c_1^2=1,032^2=1,07;\ b'=0;$$

$$a=c_1r_1=1,032\cdot0,18=0,19;$$

$$b=c_1(x_1+c_1x_2')=1,032\cdot(0,859+1,032\cdot0,5)=1,419.$$

8.1.6 Потери, не изменяющиеся при изменении скольжения

$$P_{ct}+P_{mex}=573,01+504,55=1077,55 B_{T}$$
.

Таблица 8.1 Рабочие характеристики асинхронного двигателя

Расчетные	Размер		S								
формулы	ность	0,001	0,006	0,011	0,016	0,021	0,026	0,031			
a'r' ₂ /s'	Ом	234,9	24,7	13,0	8,8	6,7	5,2	4,4			
$R=a+a'r'_2/s'$	Ом	235,1	24,8	13,2	9,0	6,9	5,4	4,6			
$X=b+b'r'_2/s'$	Ом	1,42	1,42	1,42	1,42	1,42	1,42	1,42			
$Z=\sqrt{R^2+X^2}$	Ом	235,08	24,89	13,28	9,14	7,03	5,59	4,79			
$I''_2 = U_1/Z$	Α	0,94	8,84	16,57	24,08	31,31	39,36	45,92			
$\cos \varphi'_2 = R/Z$	-	1,000	0,998	0,994	0,988	0,979	0,967	0,955			
$\sin \varphi'_2 = X/Z$	_	0,006	0,057	0,107	0,155	0,202	0,254	0,296			
$I_{1a} = I_{0a} + I''_{2} \cdot \cos \varphi'_{2}$	A	1,53	9,42	17,07	24,38	31,27	38,67	44,46			
$\left[I_{1p} = I_{0p} + I''_{2} \cdot \sin \varphi'_{2}\right]$	A	8,02	8,52	9,78	11,75	14,34	18,00	21,61			
$I_1 = \sqrt{I_{1a}^2 + I_{1a}^2}$	A	8,16	12,70	19,68	27,07	34,40	42,65	49,43			
$I'_2 = c_1 \cdot I''_2$	A	0,97	9,13	17,11	24,85	32,33	40,63	47,40			
$P_1 = 3U_1 \cdot I_{1a}$	кВт	1012,4	6220,0	11268,7	16092,2	20636,6	25521,2	29342,8			
$P_{31} = 3I_1^2 r_1$	кВт	36,8	89,2	214,1	405,0	654,1	1005,8	1350,9			
$P_{32} = 3I_2^2 r_2'$	кВт	0,36	32,29	113,46	239,51	405,19	640,12	871,32			
$P_{\text{ДОБ}} = 0.005 P_1$	кВт	5,06	31,10	56,34	80,46	103,18	127,61	146,71			
$\Sigma P = P_{CT} + P_{MEX} +$	D-	1110.01	1220 12	1461 41	1002 40	2240.00	2051.04	2446 46			
$+P_{31}+P_{32}+P_{ДОБ}$	кВт	1119,81	1230,13	1461,41	1802,48	2240,00	2851,04	3446,46			
$P_2 = P_1 - \Sigma P$	кВт	-107,4	4989,9	9807,3	14289,7	18396,6	22670,2	25896,3			
η =1- Σ P/P ₁	-	-10,6%	80,2%	87,0%	88,8%	89,1%	88,8%	88,3%			
$\cos \varphi = I_{1a}/I_{1}$	-	0,188	0,742	0,868	0,901	0,909	0,907	0,899			

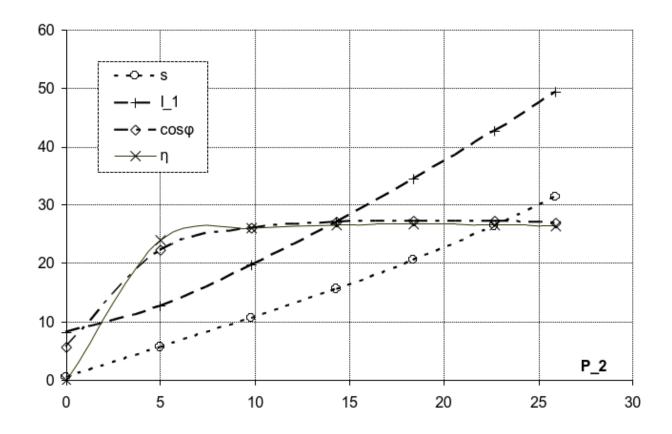


Рисунок 8.1 – Рабочие характеристики

- 9 Расчет пусковых характеристик
- 9.1 Расчет токов с учетом влияния изменения параметров под влиянием эффекта вытеснения тока (без учета влияния насыщения от полей рассеяния)
 - 9.1.1 Высота стержня в пазу (рисунок 8.76)

$$h_c = h_m - (h_m + h'_m) = 32,6 - (0,7 + 0,3) = 31,6 \text{ MM}.$$

9.1.2 В роторах с литой обмоткой

$$b_c/b_{\pi}=1$$
.

9.1.3 Коэффициент магнитной проводимости участка паза, занятого проводником с обмоткой

$$\lambda_{112}^{'} = \frac{h_0}{3b_1} \left(1 - \frac{\pi b_1^2}{8q_c} \right)^2 + 0.66 - \frac{b_{111}}{2b_1} = \frac{28.4}{3.6.1} \cdot \left(1 - \frac{3.14.6.1^2}{8.121.1} \right)^2 + 0.66 - \frac{1.5}{2.6.1} = 1.74.$$

9.1.4 Пусковые параметры (8.277), (8.278)

$$x_{12\Pi} = k_{\mu} x_{12} = 2,59 \cdot 26,6 = 68,96 \text{ OM};$$
 $c_{1\Pi} = 1 + x_1/x_{12\Pi} = 1 + 0,859/68,96 = 1,012.$

Таблица 9.1 Расчет токов в пусковом режиме с учетом влияния эффекта вытеснения тока

Расчетные	S						
формулы	ость	1	0,56	0,24	0,18	0,125	0,1
ξ =63,61h _c \sqrt{s}	-	2,01	1,50	0,99	0,85	0,71	0,58
$\varphi(\xi)$	-	0,89	0,36	0,09	0,05	0,02	0,01
$h_{R} = h_{C}/(1+\varphi)$	MM	16,75	23,31	29,07	30,17	30,90	31,28
$h'_{R} = (h_{R} - b_{1}/2)$	MM	13,70	20,26	26,02	27,12	27,85	28,23
$b_{R} = b_{1} - \frac{b_{1} - b_{2}}{h_{1}} h'_{R}$	MM	3,83	2,75	1,80	1,61	1,49	1,43
$q_{R} = \frac{\pi b_{1}^{2}}{8} + \frac{b_{1} + b_{R}}{2} h'_{R}$	MM ²	82,64	104,25	117,31	119,20	120,32	120,88
$k_r = q_C/q_R$	-	1,47	1,16	1,03	1,02	1,01	1,00

Расчетные	Размерн			5	S		
формулы	ость	1	0,56	0,24	0,18	0,125	0,1
$K_R = 1 + \frac{r_C}{r_2(k_R - 1)}$	-	1,28	1,10	1,02	1,01	1,00	1,00
$r'_2 = K_R r'_2$	Ом	0,165	0,142	0,132	0,130	0,130	0,129
$k_{\mathrm{II}} = \varphi'(\xi)$	-	0,75	0,89	0,96	0,97	0,98	0,98
$\Delta \lambda_{\Pi 2\xi} = \lambda'_{\Pi 2\xi} (1 - k_{\mathcal{I}})$	-	0,44	0,20	0,06	0,05	0,04	0,03
$\lambda_{\Pi 2\xi} = \lambda_{\Pi 2} - \Delta \lambda_{\Pi 2\xi}$	-	2,72	2,96	3,09	3,11	3,12	3,13
$K_{X} = \sum \lambda_{2\xi} / \sum \lambda_{2}$	-	0,93	0,97	0,99	0,99	0,99	1,00
$x'_{2\xi} = K_X x'_2$	Ом	0,467	0,485	0,495	0,496	0,497	0,498
$R_{\Pi} = r_1 + c_{1\Pi} r'_{2\xi} / s$	Ом	0,351	0,440	0,739	0,916	1,235	1,740
$X_{\Pi} = X_1 + c_{1\Pi} X'_{2\xi}$	Ом	1,33	1,35	1,36	1,36	1,36	1,36
$I'_{2} = U_{1} / \sqrt{R_{\Pi}^{2} + X_{\Pi}^{2}}$	A	159,81	154,99	142,16	134,08	119,66	99,54
$I_{1} = I'_{2} \frac{\sqrt{R_{\Pi}^{2} + (X_{\Pi} + X_{12\Pi})^{2}}}{c_{1\Pi}X_{12\Pi}}$	A	160,89	156,08	143,19	135,06	120,54	100,29

9.2 Расчет пусковых характеристик с учетом влияния изменения параметров под влиянием эффекта вытеснения тока и насыщения от полей рассеяния

9.2.1 Коэффициент (8.265)

$$C_N = 0.64 + 2.5 \sqrt{\frac{\delta}{t_{Z1} + t_{Z2}}} = 0.64 + 2.5 \sqrt{\frac{0.4}{15.18 + 11.92}} = 0.944$$

9.2.2 Высота скоса шлица паза статора при угле скоса $\beta = 45^{\circ}$

$$h_{\kappa} = (b_1 - b_{III})/2 = (9,4-3,7)/2 = 2,85 \text{ mm}.$$

Таблица 9.2 Расчет пусковых характеристик в пусковом режиме с учетом влияния эффекта вытеснения тока и насыщения от полей рассеяния

Расчетные	S						
формулы	ость	1	0,56	0,24	0,18	0,125	0,1
k_нас	-	1,34	1,32	1,22	1,2	1,12	1,06
$F_{\text{\tiny \Pi.CP}}0,7\frac{I_{\text{\tiny I}}k_{\text{\tiny HAC}}u_{\text{\tiny \Pi}}}{a}\times$	A	3892,0	3719,3	3153,7	2925,8	2437,1	1919,2

						I	
$\left \times \left(k'_{\beta} + k_{y_1} k_{OB1} \frac{Z_1}{Z_2} \right) \right $							
Расчетные	Размерн				S		
формулы	ость	1	0,56	0,24	0,18	0,125	0,1
$B_{\Phi\delta} = \frac{F_{\Pi.CP} \cdot 10^{-6}}{1,6\delta C_{N}}$	Тл	6,44	6,16	5,22	4,84	4,04	3,18
$\kappa_{\delta} = f(B_{\Phi\delta})$	-	0,40	0,41	0,47	0,49	0,58	0,70
$c_{31} = (t_{Z1} - b_{III1})(1 - \kappa_{\delta})$	MM	6,88	6,73	6,14	5,80	4,83	3,43
$\lambda_{\Pi 1 HAC} = \lambda_{\Pi 1} - \Delta \lambda_{\Pi 1 HAC}$	-	0,40	0,39	0,38	0,37	0,33	0,27
$\lambda_{\text{\tiny JIHAC}} = \kappa_{\delta} \lambda_{\text{\tiny JI}}$	-	1,33	1,33	1,35	1,36	1,39	1,45
$\mathbf{x}_{1\text{HAC}} = \mathbf{x}_1 \Sigma \lambda_{1\text{HAC}} / \Sigma \lambda_1$	Ом	1,05	1,08	1,22	1,30	1,52	1,84
$c_{\text{III.HAC}} = 1 + x_{\text{IHAC}} / x_{\text{I2II}}$	-	0,631	0,635	0,653	0,663	0,693	0,736
$\mathbf{c}_{32} = (\mathbf{t}_{Z2} - \mathbf{b}_{III2})(1 - \kappa_{\delta})$	MM	1,01	1,01	1,01	1,01	1,01	1,01
$\Delta \lambda_{\text{II}_{2\text{HAC}}} = \frac{h_{\text{III}_{2}}}{b_{\text{III}_{2}}} \frac{c_{\text{32}}}{c_{\text{32}} + b_{\text{III}_{2}}}$	-	6,24	6,11	5,57	5,26	4,38	3,11
$\lambda_{\Pi 2 \xi HAC} = \lambda_{\Pi 2 \xi} - \Delta \lambda_{\Pi 2 HAC}$	-	0,54	0,54	0,53	0,52	0,50	0,45
$\lambda_{\text{Д2HAC}} = \kappa_{\delta} \lambda_{\text{Д2}}$	-	2,18	2,42	2,57	2,59	2,62	2,68
$x'_{2\xi HAC} = x'_2 \Sigma \lambda_{2HAC} / \Sigma \lambda_2$	Ом	0,84	0,87	0,98	1,04	1,21	1,47
$R_{\Pi,HAC} = r_1 + c_{\Pi,HAC} r'_{\xi 2} / s$	Ом	0,331	0,351	0,371	0,377	0,393	0,416
$X_{\Pi,HAC} = x_{1HAC} + c_{1\Pi,HAC} x'_{\xi 2HAC}$	Ом	0,35	0,44	0,74	0,91	1,23	1,74
$I'_{2\text{HAC}} = U_1 / \sqrt{R_{\Pi,\text{HAC}}^2 + X_{\Pi,\text{HAC}}^2}$	A	0,97	0,99	1,03	1,04	1,09	1,16
$I_{1HAC} = I'_{2HAC} \times$							
$\times \frac{\sqrt{R_{\Pi,HAC}^2 + (X_{\Pi,HAC} + X_{12\Pi})^2}}{\sqrt{R_{\Pi,HAC}^2 + (X_{11,HAC} + X_{12\Pi})^2}}$	A	214,19	203,10	174,00	158,55	133,72	105,39
$c_{1\Pi}X_{12\Pi}$ $k' = I / I$		215 22	204,13	174,95	159,43	134,51	106,06
$k'_{HAC} = I_{HAC} / I_{IHOM}$	-	215,22					
$I_{1*} = I_{1HAC} / I_{HOM}$	-	5,91	5,60	4,80	4,38	3,69	2,91
$M_* = \left(\frac{I'_{2HAC}}{I'_{2HOM}}\right)^2 K_R \frac{s_{HOM}}{s}$	-	1,12	1,54	2,44	2,68	2,74	2,52

9.2.3 Максимальный момент двигателя

$$s_{KP} \approx \frac{r'_2}{\frac{x_1}{c_{1II}} + x'_2} = \frac{0.13}{\frac{0.693}{1.01} + 0.393} = 0.12.$$

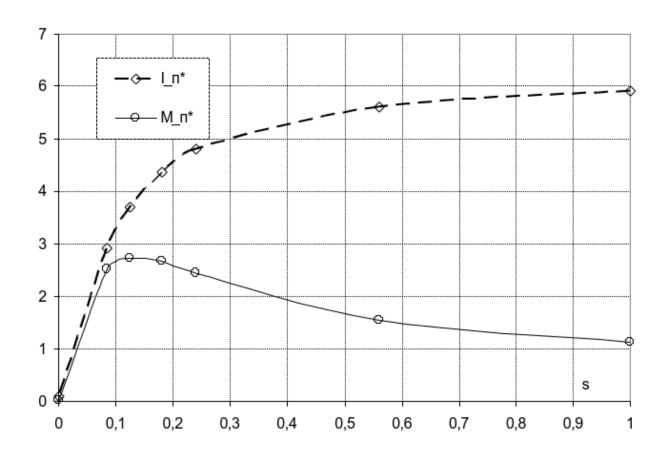


Рисунок 9.1 – Пусковые характеристики

- 10 Тепловой расчет
- 10.1 Электрические потери в обмотке статора в пазовой части (8.330)

$$P_{9.11}' = k_{\rho} P_{91} \frac{2l_1}{l_{cp.1}} = 1,07.699,81.2.130/964,6 = 201,82 B_{T}$$

где $k_{\rho}=1,07-$ коэффициент увеличения потерь.

10.2 Превышение температуры внутренней поверхности сердечника статора над температурой воздуха внутри двигателя (8.330)

$$\Delta v_{\text{\tiny HOB1}} = K \frac{P_{\text{\tiny 3.\Pi I}}^{'} + P_{\text{\tiny CT.OCH}}}{\pi D l_{\text{\tiny 1}} \alpha_{\text{\tiny 1}}} 10^{6} = 0,22 \cdot \frac{201,82 + 359,3}{3,14 \cdot 145 \cdot 130 \cdot 155} \cdot 10^{6} = 13,45^{\circ} \text{C},$$

где K=0,22 (таблица 8.33) – коэффициент, учитывающий, что часть потерь в сердечнике статора и в пазовой части обмотки передается через станину непосредственно в окружающую среду;

 α_1 =155 Вт/м² (рисунок 8.70,8.71) – коэффициент теплоотдачи.

10.3 Расчетный периметр поперечного сечения паза статора (8.332)

$$\Pi_{\Pi I} \!\!=\!\! 2h_{\Pi K} \!\!+\!\! b_1 \!\!+\!\! b_2 \!\!=\!\! 2\cdot\! 27,\! 5\!\!+\!\! 15,\! 1\!\!+\!\! 9,\! 4\!\!=\!\! 79,\! 5\text{ mm}.$$

10.4 Перепад температуры в изоляции пазовой части обмотки статора(8.331)

$$\Delta v_{_{_{\mathbf{H3.\Pi1}}}} = \frac{P_{_{_{_{_{3.\Pi1}}}}}}{Z_{_{1}}\Pi_{_{\Pi1}}l_{_{1}}} \left(\frac{b_{_{_{_{\mathbf{H3.\Pi1}}}}}}{\lambda_{_{_{3KB}}}} + \frac{b_{_{1}} + b_{_{2}}}{16\lambda_{_{_{3KB}}}}\right)10^{3} = \frac{201,82}{36.79,5.130} \cdot \left(\frac{0,4}{0,16} + \frac{9,4+15,1}{16.1,34}\right) \cdot 10^{3} = 2,37^{\circ}\mathrm{C},$$

где $\lambda_{\text{экв}}$ =0,16 Вт/(м°С) – средняя эквивалентная теплопроводность пазовой изоляции;

10.5 Электрические потери в обмотке статора в лобовых частях (8.329)

$$P'_{9.\pi 1} = k_{\rho} P_{91} \frac{2l_{\pi 1}}{l_{cp.1}} = 1,07.699,81.2.352,3/964,6 = 546,97 BT.$$

10.6 Перепад температуры по толщине изоляции лобовых частей (8.335)

$$\Delta v_{_{\text{H3},\Pi 1}} = \frac{P_{_{9,\Pi 1}}^{'}}{2Z_{_{1}}\Pi_{_{\Pi 1}}I_{_{\Pi 1}}} \left(\frac{b_{_{\text{H3},\Pi 1}}}{\lambda_{_{2KR}}} + \frac{h_{_{\Pi 1}}}{12\lambda_{_{2KR}}^{'}}\right)10^{3} = \frac{546,97}{2\cdot30\cdot79,5\cdot352,3} \cdot \left(\frac{0,05}{0,16} + \frac{27,5}{12\cdot1,34}\right) \cdot 10^{3} = 0,66^{\circ}\text{C},$$

где $\Pi_{\pi 1}$ = $\Pi_{\pi 1}$ =79,5 мм – периметр условной поверхности охлаждения лобовой части одной катушки;

 $b_{_{\rm ИЗ,Л}1}$ =0,05 мм – односторонняя толщина изоляции лобовой части катушки.

10.7 Превышение температуры наружной поверхности лобовых частей над температурой воздуха внутри двигателя (8.336)

$$\Delta v_{\text{\tiny HOB.,II}} = \frac{KP_{\text{\tiny SHI}}'}{2\pi Dl_{\text{\tiny BBJI}}\alpha_1} = \frac{0.22 \cdot 546.97}{2 \cdot 3.14 \cdot 145 \cdot 76.5 \cdot 155} = 11.14^{\circ} \text{C}.$$

10.8 Среднее превышение температуры обмотки статора над температурой воздуха внутри двигателя (8.337)

$$\Delta v_{1}^{'} = \frac{(\Delta v_{\text{\tiny HOB1}} + \Delta v_{\text{\tiny M3.\Pi1}})2l_{1} + (\Delta v_{\text{\tiny M3.\Pi1}} + \Delta v_{\text{\tiny HOB.\Pi1}})2l_{1}}{l_{\text{\tiny cp1}}} =$$

$$= \frac{(13,45 + 2,37) \cdot 2 \cdot 130 + (0,66 + 11,14) \cdot 2 \cdot 352,3}{964,6} = 12,88^{\circ}C,$$

10.9 Эквивалентная поверхность охлаждения корпуса (8.343)

 $S_{\text{кор}} = (\pi D_a + 8\Pi_p)(l_1 + 2l_{\text{выл}1}) = (3,14\cdot278 + 8\cdot319)(130 + 2\cdot76,5) = 9,69\cdot10^5 \text{ мм}^2,$ где $\Pi_p = 319 \text{ мм (рисунок } 8.73) - \text{условный периметр поперечного сечения ребер}$

Сумма потерь, отводимых в воздух внутри двигателя

корпуса двигателя.

10.10

$$\Sigma P_{_{\rm B}}^{'} = \Sigma P^{'} - (1 - {\rm K})(P_{_{_{\rm 3,\Pi}1}}^{'} + P_{_{\rm ct,och}}) - 0.9 P_{_{\rm MeX}} =$$

$$= 2399,29 - (1 - 0.22)(201,82 + 359,3) - 0.9 \cdot 504,55 = 1507,52 \, {\rm B_{T}},$$

$$\Gamma \Pi = \Sigma P^{'} = \Sigma P^{'} + (k_{_{\rm P}} - 1)(P_{_{31}} + P_{_{32}}) = 2319,81 + (1.07 - 1)(699,81 + 435,69) = 2399,29 \, {\rm B_{T}};$$

$$\Sigma P = 2319,81 \, {\rm BT} \, (\text{таблица } 8.34) - \text{сумма всех потерь в двигателе}.$$

10.11 Превышение температуры воздуха внутри двигателя над температурой окружающей среды (8.338)

$$\Delta v_{_{B}} = \frac{\Sigma P^{'}}{S_{_{KOD}}\alpha_{_{B}}} 10^{6} = \frac{1507,52}{9,69 \cdot 10^{5} \cdot 20} \cdot 10^{6} = 77,81^{\circ} C,$$

где $\alpha_{\text{\tiny B}}$ =20 Bт/(м².°С) (рисунок 8.70,б) – коэффициент подогрева воздуха.

10.12 Среднее превышение температуры обмотки статора над температурой окружающей среды (8.344)

$$\Delta v_1 = \Delta v_1' + \Delta v_6 = 12,88 + 77,81 = 90,7 \,^{\circ}C$$

- 10.13 Проверка условий охлаждения двигателя
- 10.13.1 Коэффициент, учитывающий изменение условий охлаждения по длине поверхности корпуса, обдуваемого наружным вентилятором (8.357)

$$k_m = m' \sqrt{\frac{n}{100} D_a} = 3.3 \cdot \sqrt{\frac{3000}{100} \cdot 278 \cdot 10^{-3}} = 9.53.$$

10.13.2 Требуемый для охлаждения расход воздуха (8.356)

$$\theta_{\rm B} = \frac{k_{\rm m} \Sigma P_{\rm B}^{'}}{1100 \Delta v_{\rm B}} = \frac{9,53 \cdot 2399,29}{1100 \cdot 77,81} = 0,27 \text{ M}^{3}/\text{c}.$$

10.13.3 Расход воздуха, обеспечиваемый наружным вентилятором (8.358)

$$\theta_{B}^{'} = 0.6D_{A}^{3}10^{-9} \frac{n}{100} = 0.6 \cdot 278^{3} \cdot 10^{-9} \cdot 3000/100 = 0.39 \text{ m}^{3}/\text{c}.$$

Нагрев двигателя находится в допустимых пределах. Вентилятор обеспечивает необходимый расход воздуха.

- 11 Механический расчет вала
- 11.1 Расчет вала на жесткость

Рисунок 11.1 – Эскиз вала к механическому расчету

Вал асинхронного двигателя соединен с приводимым механизмом упругой муфтой: $D_{\text{н2}}$ =144 мм; δ =0,4 мм; муфта – тип МУВП 1-32; m=6,97 кг; L=165 мм; r=50 мм. Размеры вала: d_1 =38 мм; d_2 =40 мм; d_3 =49 мм; c=49мм; b=169 мм; a=169 мм; ℓ =338 мм; t=5 мм; t=6,97 кг; t=169 мм; t=169 м

11.1.1 Сила тяжести сердечника ротора с обмоткой и участком вала по длине сердечника (3.2)

$$G'_2 \!\!=\!\! 64 \cdot D^2_{_{H2}} \cdot \ell_2 \cdot 10^{\text{--}6} \!\!=\!\! 64 \cdot 144^2 \cdot 130 \cdot 10^{\text{--}6} \!\!=\!\! 173~H.$$

11.1.2 Прогиб вала посередине сердечника (3.5)

$$f_{t} = \frac{G_{2}^{'}(a^{2}S_{b} + b^{2}S_{a})10^{6}}{3E\ell^{2}} = \frac{173 \cdot (169^{2} \cdot 15,74 + 169^{2} \cdot 15,74) \cdot 10^{6}}{3 \cdot 2,06 \cdot 11^{11} \cdot 338^{2}} = 2,2 \cdot 10^{-3} \text{ MM},$$

где $E=2,06\cdot10^{11}$ Па – модуль упругости стали;

 $S_0=0,011 \text{ mm}^{-1}$;

 $S_a=15,74 \text{ mm}^{-1};$

 $S_b=15,74 \text{ MM}^{-1}$.

11.1.3 Номинальный момент вращения (3.1)

$$M_2=9.55 P_2/n=9.55 19200/3000=57.94 H M.$$

11.1.4 Поперечная сила, вызываемая передачей через упругую муфту (3.7)

$$F_{\pi} = (\kappa_{\pi} M_2/r) \cdot 10^3 = (0.3 \cdot 57.94/50) \cdot 10^3 = 347.62 \text{ H}.$$

11.1.5 От поперечной силы передачи прогиб вала посередине сердечника (3.8)

$$\begin{split} f_{\scriptscriptstyle H} \!\! = \!\! F_n c [1,\!5 \ell S_0 \!\! - \! S_b] a \!\! + \!\! b S_a] \cdot 10^{\text{-6}} \! / \!\! 3 E \ell^2 \!\! = \!\! 347,\!62 \cdot \!\! 49 [(1,\!5 \cdot \!\! 338 \cdot \!\! 1,\!1 \cdot \! 10^{\text{-3}} - \!\!\! - \!\!\! 15,\!74) \cdot 169 \!\! + \!\!\! 169 \cdot \!\! 15,\!74] \cdot 10^6 \! / \!\! (3 \cdot \!\! 2,\!06 \cdot \!\!\! 10^{11} \cdot \!\! 338^2) \!\! = \!\!\! 2,\!27 \cdot \!\!\! 10^{\text{-5}} \, \text{mm}. \end{split}$$

- 11.1.6 Начальный расчетный эксцентриситет сердечника ротора (3.9) $e_0 = \kappa \delta + f_T + f_\Pi = 0,15 \cdot 0,4 + 2,2 \cdot 10^{-3} + 2,27 \cdot 10^{-5} = 6,22 \cdot 10^{-2} \text{ мм.}$
- 11.1.7 Сила одностороннего магнитного притяжения (3.10) $T_0 = 0.15 \ D_{\rm H2} \ell_2 e_0 / \delta = 0.15 \ 144 \ 130 \ 6.22 \ 10^{-2} / 0.4 = 437.43 \ H.$
- 11.1.8 Дополнительный прогиб от силы T_0 (3.11) $f_0 = f_T T_0 / G'_2 = 2,2 \cdot 10^{-3} \cdot 437,43/173 = 0,005571 \text{ мм.}$
- 11.1.9 Установившийся прогиб вала (3.12)

$$f_{\rm M} = f_0/(1-f_0/e_0) = 0.005571/(1-0.005571/6.22\cdot10^{-2}) = 0.00612$$
 mm.

11.1.10 Результирующий прогиб вала (3.13)

$$f = f_T + f_n + f_M = 2.2 \cdot 10^{-3} + 2.27 \cdot 10^{-5} + 0.00612 = 0.00834 \text{ mm}.$$

- 11.2 Определение критической частоты вращения
- 11.2.1 Прогиб от силы тяжести упругой полумуфты (3.14)

$$f_c = f_n F_c / (2F_n) = 2,27 \cdot 10^{-5} \cdot 34,2 / (2 \cdot 347,62) = 1,12 \cdot 10^{-6} \text{ MM},$$

- где $F_c=9.81 \text{ m/2}=34.2 \text{ H}$ сила тяжести соединительного устройства;
 - 11.2.2 Первая критическая частота вращения (3.16)

$$n_{\rm kp} = 950 \sqrt{(1 - f_0 / \ell_0) / (f_t + f_c)} =$$

$$=950\sqrt{(1-0.005571/6.22\cdot10^{-2})/(2.2\cdot10^{-3}+1.12\cdot10^{-6})}$$
 =19307,3 об/мин.

Больше минимально допустимого значения $n_{\kappa p}$ =1,3:3000=3900 об/мин

- 11.3 Расчет вала на прочность
- 11.3.1 Определение Z₁ (3.18)

$$z_1 = L/2 + \ell_1/2 = 165/2 + 32/2 = 98,5 \text{ mm}.$$

11.3.2 Изгибающий момент (3.17)

$$M_{\text{\tiny M}} = \kappa(F_{\text{\tiny n}} + F_{\text{\tiny c}}) z_1 \cdot 10^{-3} = 2(347,62 + 34,2) \cdot 98,5 \cdot 10^{-3} = 75,22 \text{ H} \cdot \text{M}.$$

11.3.3 Момент кручения (3.19)

$$M_{\kappa} = \kappa M_2 = 2.57,94 = 115,87 \text{ H} \text{ M}.$$

11.3.4 Момент сопротивления при изгибе (3.20)

$$w=0.1 d^3=0.1(38-5)=3593.7 \text{ mm}^3$$
.

11.3.5 Приведенное напряжение (3.21)

$$\sigma_{np} = (\sqrt{M_{\pi}^2 + M_{\kappa}^2} \cdot 10^9)/w = (\sqrt{75,22^2 + 115,87^2} \cdot 10^9)/3593,7 = 3,84 \cdot 10^7 \text{ }\Pi a.$$

Полученное значение меньше допустимого для стали марки 45 значения $\sigma_{np}\!\!=\!\!245\cdot\!10^6\;\Pi a.$

- 12 Расчет подшипников
- 12.1 Наибольшая радиальная нагрузка на подшипник A (3.26) $R_A = (G'_2 + T_0)b/l + F_{\Pi}c/l = (173 + 437, 43)169/338 + 347,62.49/338 = 355,6 \text{ H}.$
- 12.2 Динамическая приведенная нагрузка для подшипника А

$$Q_A = k_G R_A = 1.5.355.6 = 533.4 \text{ H}$$

- где $k_{\sigma}=1,5-$ коэффициент, учитывающий характер нагрузки машины.
 - 12.3 Необходимая динамическая грузоподъемность подшипника A (3.33) $C_A = (Q/25,6)\sqrt[3]{\text{Ln}} = 533,4/25,6 \cdot \sqrt[3]{12000 \cdot 3000} = 6880,1 \text{ H}.$
 - 12.4 Наибольшая радиальная нагрузка на подшипник В (3.27) $R_B = (G_2' + T_0)a/l + F_\Pi(l+c)/l = (173 + 437,43)169/338 + 347,62 \cdot (338 + 49)/338 = 703,2 \text{ H}.$
 - 12.5 Динамическая приведенная нагрузка для подшипника В $Q_{\rm B} = k_{\alpha} R_{\rm B} = 1,5 \cdot 703, 2 = 1054, 8 \ {\rm H}.$
 - 12.6 Необходимая динамическая грузоподъемность подшипника В (3.33) $C_B = (Q_B/25,6)\sqrt[3]{\text{Ln}} = 1054,8/25,6 \cdot \sqrt[3]{12000 \cdot 3000} = 13605,6 \text{ H}.$

Выбираем радиальные шарикоподшипники легкой серии 207 с динамической грузоподъемностью $C = 25100 \; \mathrm{H}.$

Заключение

Ускорение научно-технического прогресса требует всемерной автоматизации производственных процессов. Для этого необходимо создавать электрические машины, удовлетворяющие своим показателям и характеристикам, весьма разнообразным требованиям различных отраслей народного хозяйства.

Процесс создания электрических машин включает в себя проектирование, изготовление и испытание. Под проектированием электрической машины понимается расчет размеров отдельных ее частей, параметров обмоток, рабочих и других характеристик машины, конструирование машины в целом, а также ее отдельных деталей и сборочных единиц, оценка технико-экономических показателей спроектированной машины, включая показатели надежности.

Список литературы

1 Гольдберг О.Д. Проектирование электрических машин: Учебник для вузов. – М.: Высшая школа, $2001.-430~\mathrm{c}.$